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Abstract

A new methodology leverages virtual casting process
simulations to predict the statistical distribution of local
mechanical properties, based on computed local
microstructures and defects. The extensive result sets
generated from each simulation can be statistically eval-
uated in a manner similar to numerous individual tensile
tests. By incorporating process variability into the simu-
lation, this innovative approach enables probabilistic
modeling of expected local properties. Consequently, this

method supports designers during the design phase for
reliable component development and assists casters in
achieving robust process designs.

Keywords: probabilistic modeling, casting process
simulation, process variability, microstructure modeling,
tensile properties, robust component design

Introduction

Casting process simulation has been utilized for 40 years to

provide insight into the casting process, predict potential

problem areas, and help experts optimize their casting

design and engineering decisions. In addition to the

growing capabilities of simulation software, the key to

increasing the utilization is the delivery of quantitative

information to the right people at the right time. Tradi-

tionally, information from casting process simulation has

been successfully used downstream in the engineering of

the casting process. At this stage, most of the cost-relevant

decisions about component design and the selection of the

casting process have already been made. The earlier the

information is implemented in the design process, the more

design freedoms are created and related cost savings can be

realized.

Robustness of Cast Designs

In the design phase, the designer does not know the final

process conditions, so they must design the component

with uncertainty in mind. The relationship between defin-

ing the process, local microstructure, defects and final

mechanical properties is considered using safety factors in

the component design and specifications. Consequently, the

potential of the alloy used is therefore not fully exploited,

making the part unnecessarily heavy.

This is a typical ‘‘chicken or the egg’’ problem: How can I

optimize the casting geometry for the material without

having detailed knowledge of the manufacturing conditions

at this stage? Often, the supplier has not even been selected

at the time of the design freeze, meaning the window of

opportunity to incorporate process simulation information

is minimal. The designer must account for the uncertainties

of undefined process constraints, leading to the use of

safety factors and demanding specifications for the sup-

plier. Consequently, casting customers demand certain
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quality levels from their suppliers and specific property

levels for different areas of the casting (Figure 1),

depending on the load case, which reduces risk. The sup-

plier is responsible for the resulting production and quality

costs.

Robustness of the Casting Process

Once the component design has been completed, decisions

must be made about casting technology, tooling and pro-

cess windows. At this stage, other players, such as the

toolmaker and casting facility get involved. Simultane-

ously, the number of parameters influencing part quality

and associated mechanical properties increases signifi-

cantly. To obtain a robust mold design and process con-

dition, it is standard to use information from individual

simulations or virtual trial planning with the help of casting

process simulation. These analyses allow the determination

of ideal operating conditions and the establishment of a

robust process window for the expected mechanical prop-

erties of the part.

The toolmaker designs the gate and mold according to the

required part quality, while the engineer in the casting

facility sets operating conditions that ensure a smooth and

short ramp-up phase. This information also allows the

quality manager to inform his customer (i.e., the part

designer) of the expected variation before the first part is

produced. However, these activities come too late to opti-

mize the casting design itself.

Simulation of Casting Properties

Casting process simulation has been used for 40 years to

identify potential casting defects at an early stage and

avoid them by optimizing the casting technique.2 In the

early 1990s, models were developed that could provide

information on the expected local microstructure in addi-

tion to macroscopic predictions of flow, heat flow and

stresses. These so-called micromodels use theories of

nucleation, crystal growth kinetics and segregation

behavior of the melt, coupling them with the macroscopic

heat flow to calculate local microstructures.3 The knowl-

edge of the local proportions and the formation of different

phases also made it possible for the first time to predict

local mechanical properties (Figure 2).

The advantages of using micromodels over purely macro-

scopic calculations lie in the additional information they

provide on local microstructures and properties.

Microstructure simulation allows for variation in alloy

composition as an input parameter and can account for

different metallurgical and inoculation states. This method

is useful for predicting properties whenever the basic

microstructure significantly influences local mechanical

properties. This is especially true for cast iron materials

and controlled casting processes in light metal casting.

Consequently, these models have been adopted early on for

these material groups and processes.4–7

In casting processes, where material failure is predomi-

nantly determined by imperfections in the casting, pre-

dicting local mechanical properties based solely on the

calculated microstructure can be problematic. This is par-

ticularly true for high pressure die casting, where the local

properties are determined by the turbulent mold filling,

which occurs in milliseconds, and the rapid solidification,

both of which introduce various defect mechanisms. Sig-

nificant defects that lead to natural weakening of the

microstructure include shrinkage-related pores, gas poros-

ity from air inclusions and hydrogen precipitation, as well

as oxides, cold runs and microcracks (Figure 3). The

individual modeling of these defects in casting process

Figure 1. Technical specification for aluminum sand, gravity and die casting. Division of the
component into zones of equal strength (left). A zone model is derived based on results from
e.g., durability calculations, crash simulations and misuse cases. The zones tolerate different
defect sizes and frequencies (right).1
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simulation has also made significant progress in the last 20

years.

Most of these defects, especially oxides and inclusions,

occur discreetly and stochastically distributed in the cast-

ing, even with a robust process condition. Therefore, dis-

tributions and fluctuations can only be quantitatively

predicted to a limited extent by the deterministic models

described above.

To make reliable predictions about the expected local

properties for the high pressure die casting process, the

methodology of ‘‘quality mapping’’ was developed in the

early 2000’s. Here, extensive measurements of mechanical

properties in the component were correlated with existing

quality criteria from the casting process simulation and

used to predict the local component behavior.8–11 The

advantage of quality mapping is that it validates stochastic

fluctuations in casting quality through real test planning.

However, a disadvantage is that the determined correla-

tions cannot be arbitrarily transferred to other components

or processes (Figure 4).

The predicted local material properties, including the

effects of local defects, can be transferred to FE-analysis of

the part subjected to static, fatigue, or thermomechanical

loading.12–16 Component designers have long used these

capabilities in component design CAE programs to inves-

tigate the influence of varying casting properties on load-

ing.17 The first applications included accounting for

residual stresses resulting from heat treatment of cylinder

heads.18–20 Simulated information on local properties can

also be used in fatigue analysis21–23 (Figure 5). However,

this is only accepted in practice if the minimum expected

local properties are statistically validated.

From Deterministic to Probabilistic Modeling

Most people have a deterministic mindset. This is what we

were taught in school: input certain values into an equation

and you will always get the same result. This way of

thinking is often applied to material properties (e.g., by

using values from standards as fixed values in calcula-

tions). People tend to think that we are moving away from

physics (or accuracy) when we start using statistics. The

assumption is that if I keep my process constant, everything

should stay the same.

Figure 2. Principle of microstructure simulation of aluminum materials. In addition to the classical
input variables for the process, the alloy composition and the metallurgical state of the melt can be
taken into account and influence the results.

Figure 3. Typical casting defects in die casting: micro-
porosity (top left), entrapped air and hydrogen precipi-
tation during solidification (top right), oxides (bottom
left), or cold running (bottom right).
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The use of deterministic models in casting process simu-

lation has significant strengths. If the model allows pre-

diction of a property or defect, then any change in the input

parameters -such as part design, die design, casting tech-

nology, metallurgy, alloy composition, and process

parameters- leads to a measurable response in the results.

The implicit strong coupling between ‘‘input’’ and ‘‘out-

put’’ makes it possible to achieve the desired objective

(quality, productivity or cost) by systematically changing

the input parameters. However, this is where the model

differs from reality, as the coupling of process data to part

quality is very weak due to the time factor and the

incomplete and often indirect measurability of both the

input variables and the casting quality.

Since the 2010’s, the implementation of virtual test plan-

ning and automatic optimization in simulation has created

opportunities to complement the usual sequential approach

(determination of casting conditions, simulation, evalua-

tion of results for a next variant). This allows for a holistic

investigation of production windows and the determination

of optimal conditions for the respective objective.24–27 It

Figure 4. Property prediction by quality mapping for a die-cast strut dome. Correlation of
(a) yield strength and (b) elongation at break with tensile test results.9

Figure 5. Integrating casting process simulation results into product development and process
design.
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also enables a systematic investigation of production

variations by varying the process conditions with different

simulations (Figure 6).

The weakness of the deterministic approach remains that in

a single simulation, the simulated defects or properties vary

locally but have no dispersion. This is a fundamental

problem when evaluating a simulated defect.

Confidence in the predictive quality of casting process

simulation is often so high today that the predicted defect is

accepted as ‘‘real’’. However, a single simulation repre-

sents just one virtual attempt. Simulating the same scenario

ten times will yield the same result each time, whereas

reality in the foundry involves accepting production vari-

ations and the consequent changes in quality. Foundry

production staff aim for a process window that is as robust

as possible to absorb natural variation.

When foundry staff discuss scrap, they typically refer to

percentages like 5% or 2%. This means that only every

20th or 50th part exhibits the defect predicted by the

simulation. In addition, depending on the specification, a

real defect may be classified as such or even neglected

(Figure 7):

– For instance, if the allowable pore size is 1 mm,

what about 0.9 mm?

– Similarly, if the acceptable defect zone has 4

pores within a 25 mm2 area, what if there are 6

smaller pores totaling the same area?

Furthermore, depending on the location or minor local

variation, the identical defect may either be deemed

acceptable or cause the part to be scrapped, despite the

simulation results remaining unchanged (Figure 8).

There is often a misconception that if deviations exist

between reality and simulation, the calculated results

are inherently ‘‘wrong’’. Unlike many properties that

vary continuously, defects such as pores are singularities

with discrete values—they are either present or

absent, and within the acceptable or critical range.

Figure 6. Systematic investigation of process variations
on the tendency of cold runs with casting process
simulation using a virtual test plan. Each point corre-
sponds to the result of a simulation with different
process or boundary conditions. The evaluation criterion
is the liquidus temperature. In this example, the process
variations investigated (casting temperature, shot time,
and mold temperatures) lead to cold runs in only two out
of ten variants when the melt overheats by 160 �C.
At 110 �C, seven out of ten variants are at risk of being
rejected, and at 60 �C, nine out of ten variants are at risk
of being rejected.

Figure 7. Specification of reasons for rejections in the
casting. The smallest fluctuations in the measured error
variables can lead to rejects, depending on the limit
value.28

Figure 8. Comparison of simulation results with real
failure patterns. The simulation shows a region, where
defects occur. However, depending on the location and
specification, the real defect is critical or acceptable.28
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However, when the real distribution of measured scatter

overlays the deviation between simulation results and

actual measurements, simulated errors predominantly

align with the normal distribution of real fluctuations

(Figure 9).

As mentioned, instances of erroneously rejected results are

more likely outliers than the norm. Therefore, each simu-

lation result should be viewed as representing the maxi-

mum probability of defect occurrence, rather than as a

precise geometric characteristic.

Probabilistic Modeling of Mechanical Properties

The molten aluminum entering the mold will not only

contain atoms of the specified chemical composition, but it

will also invariably include a stochastic distribution of

oxides and other inclusions. The extent of potential damage

to the material depends on the amount of these defects

already present in the melt when it is poured into the

casting chamber (which we can never precisely know in the

simulation or specify as a fixed boundary condition). It also

depends on how much is generated during mold filling and

solidification (which we can better predict). Therefore,

there is a physical rationale for introducing a ‘‘process

variability’’ parameter into the simulation, which describes,

for example, the ‘‘degree of damage’’ to the melt even

before the simulation begins. This factor is highly depen-

dent on the quality of the raw material and the melt

treatment in the foundry prior to casting.

Mechanical properties in castings not only follow the nat-

ure of the underlying physical phenomena, but also adhere

to stochastic principles in terms of material deformation

and failure. The elongation of the material up to failure

must therefore be understood as a problem of the ‘‘weakest

link’’. Oxides play a significant role here due to their shape

and size and inclusions due to the high local stress con-

centration (Figure 10).29, 30 As experimental work related

to this paper reveals, the scatter of these failures causes

naturally follows a stochastic distribution rather than just a

deterministic value (Figure 11).31, 33 However, the local

defect levels, and therefore the reliability of the casting

process, are still determined by design and process deci-

sions.32 Combining the deterministic models of casting

process simulation with a probabilistic approach thus pro-

vides a method that better represents the underlying

physical phenomena.

If this behavior is accepted, the possibilities in the real-

world are very limited:

– How many specimens are needed to determine

robust values for mechanical properties in a

casting?

– How often must the test be repeated in a

reproducible and reliable manner to obtain statis-

tically valid data on material-related component

behavior?

– Where can specimens be taken from the casting?

For reliable interpretation of material properties, averaging

a few samples is not sufficient to provide statistically sig-

nificant information about nominal values, much less to

evaluate extremes or outliers.

Methodology for Probabilistic Modeling
of Mechanical Properties

In a MAGMASOFT� simulation, the casting is often dis-

cretized with more than one million elements.34 This

means that for each calculated criterion, defect or property,

a corresponding amount of information is available. These

one million calculated values of mechanical properties can

be interpreted as equivalent to one million tensile tests.

Thus, it is reasonable to describe this as ‘‘big data,’’ which

is ideally suited for statistical evaluation. This approach

allows the problem of error distributions and fluctuations,

as described above, to be addressed probabilistically.

The methodology can be illustrated using a stochastic error

distribution in a cast tension rod. Each calculated cell in the

tie rod provides a different value for the expected

microstructure, the calculated defects, and the resulting

mechanical properties, Figure 12. The local ideal stress-

strain curve for the material results from the microstructure

simulation. The evaluation of the defects results in a sta-

tistical distribution that can be represented as a probability

density function. This not only shows the strains at which

the tension sample will most often fail, but more impor-

tantly, it indicates the statistical lower limit, i.e., the

Figure 9. Deviation between simulation and reality.
Apparent discrepancies between the results of a simu-
lation and an observed defect can often be explained by
different probabilities.
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minimum strains to be expected. ‘‘This information can be

mathematically described and exported as a field to other

calculation programs with just a few parameters.’’

The new methodology described below employs these

concepts for probabilistic modeling of the mechanical

properties of castings, as shown in Figure 13, using pre-

dictions from the commercial modeling software in con-

junction with the microstructure simulation for aluminum

to locally calculate the mechanical properties of the

microstructure and combines this with a statistical evalu-

ation of the error distribution.

The following innovations are used:

1. Inclusion of an expectation function for process

variability in the simulation.

2. Calculation of local stress-strain curves for the

local microstructure using microstructure

simulation.

3. Statistical evaluation of simulated defect distri-

butions over a defined area and use of these static

results as discount factors on the respective

stress-strain curve at each location.

4. Statistical evaluation of the determined stress-

strain curves for any area or zone with special

load case or quality requirements, including the

determination of distribution functions and min-

imum expected properties for each domain.

The methodology built into the software is as follows:

The user first defines the known status of the part geometry,

tool design and process conditions for the current devel-

opment status, along with the usual inputs for microstruc-

ture simulation, such as alloy composition and expected

metallurgy. This constitutes the standard input information

for any simulation (1). Additionally, a distribution function

for the expected general process variability is specified,

which can be determined from practical experience from

previous or similar projects.

This information is used to perform a single process sim-

ulation, which should be as detailed as currently possible,

Figure 10. Determining the root cause of failure in a tensile specimen. Digital image correlation and
scanning electron microscope observations of aluminum castings show that fracture is caused by an
oxide layer that acts as a strain concentration under load.29, 30

Figure 11. The real or calculated frequency distribution for the maximum tensile strength (left) can be represented
as probability P (center). A Weibull analysis can be used to determine both the consistency of the data (straight
line) and the minimum expected properties (right) figure adapted from [33].
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depending on the state of knowledge (2). The integrated

microstructure simulation (3) is used to calculate local

microstructure distributions for the material in addition to

the classical, known results (4). These distributions serve as

the basis for determining the local mechanical properties

and the corresponding ideal stress-strain curves for each

calculated microstructure (5).

At the same time, the software calculates the various errors

to be expected for the entire component (6). For die cast-

ings, this is especially true for shrinkage porosity

distributions and air inclusions. However, any other cal-

culated criterion (e.g., for oxide distribution, cold run or

cracking tendency) can also be used. A statistical evalua-

tion can be performed for each of these defect criteria over

a large number of cells to avoid the problem of deviations

from discrete values. The mean value of the defect distri-

bution is linked to the previously calculated local stress-

strain curves for the respective area using a discount

function, which can vary for each defect criterion (7). For

each individual curve, this leads to a reduction of the ideal

curve to the expected defect value (8) and thus to the

Figure 12. Distribution of calculated fracture strains A5 (top left) and their probability
density function in a tensile member (bottom left). This information can be
represented in a stress–strain curve and a probability density function and made
available to other calculation programs with a few parameters (E, n, K).

Figure 13. Flow chart of the core process of the methodology for a calculated design
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expected distribution of the total strength in each calculated

cell, Figure 14(a). With the previously defined process

variability, a stress-strain curve with a corresponding

probability distribution is now available for each calculated

cell in the casting, Figure 14(b).

This information can now be used in the software to per-

form further classical statistics on the distribution of

properties in the casting. The user can decide which areas

of the casting or which data sets to use for the evaluation.

The software automatically determines the distribution of

all calculated properties and their probabilities for prede-

fined evaluation areas in the component. This can be

understood as an extremely large number of tensile tests

from the component, each supported by a virtual test

scatter; Figure 14(b).

This also allows Weibull analyses to be performed,

showing distribution functions and expected values for the

minimum expected properties in the respective range for

the defined zones. The output is a series of expected

minimum mechanical properties and the expected distri-

bution for each evaluation range and their scatter (yield

strength Rp0.2, tensile strength Rm, elongation A5), as

shown in Figures 20 and 21 in the following chapter.

Applying the Methodology in the Development
Process

Use Case: ‘‘Determination of Design Capability’’

The methodology is then applied using this commercial

modeling software on a die-cast transmission housing. To

meet the requirements of the small-time window in the

development process for determining ,,design capability’’,

a process simulation is performed for a single design.

Depending on the complexity of the part, this can be done

in just a few hours.

After the usual definition of casting technology, tool and

process conditions (Figure 15) and the specification of a

general process variability, the casting is additionally and

automatically divided into so-called evaluation areas (EA)

for the statistical evaluation of the calculated defects

(Figure 16).

Relevant data for the specification of the general process

variability can be retrieved from different sources. The part

designer can either use information from given specifica-

tions of the part or take statistically relevant data from

quality systems of previous similar projects. He can also

work with ‘‘what if’’ scenarios to assess the sensitivity of

the expected process variability of different future part

suppliers.

The size of the evaluation areas and the corresponding

number of cells can be freely defined by the user. Typi-

cally, several thousand cells are available in each evalua-

tion area for the statistical evaluation of the calculated

defects. For the output of the expected mechanical prop-

erties and their distributions, the casting is further divided

into the specified zones of different requirements

(Figure 16).

The process simulation largely follows the familiar pro-

cedure. Additional information includes the definition of

the alloy composition and the metallurgical parameters for

inoculation and refinement used by the integrated

microstructure simulation.

Figure 14. Calculation of total strength based on the determined defect distribution for three
different locations in the part (a). Using the specified process variability, a probability function for
the expected mechanical properties can be determined for each location in the casting (b).
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Primary results from cycle calculation, mold filling and

solidification represent well-known criteria (Figure 15).

Additionally, microstructure and phase distributions along

with intermetallic phases are calculated from the integrated

microstructure simulation (Figure 17). This information is

then utilized to derive the local ideal stress-strain curves

(Figure 18).

The defect distributions simultaneously calculated in the

casting (illustrated here for entrapped air and shrinkage

porosity) are statistically evaluated in the defined evalua-

tion areas (Figure 19). The damage value determined with

the respective reduction factor is applied to the ideal stress-

strain curves in each cell, thereby reducing the local tensile

strength and elongation accordingly. Consequently, prop-

erty distributions for yield strength, tensile strength and

elongation at fracture are obtained (Figure 20).

The data from all cells are statistically evaluated in a

Weibull analysis for the evaluation in the defined zones.

This allows a quantitative evaluation of the ‘‘Design

Capability’’ of the component (Figure 21). An overview of

the property distributions in the individual zones and the

corresponding stress-strain curves determined for each

zone, along with their probability density distributions, is

shown in Figure 22.

Figure 15. Specification of a process variability, the process setup and classic results of die casting process
simulation: mold filling (bottom left), solidification (bottom center) and mold temperatures (bottom right) are the
basis for probabilistic modeling of microstructures and properties.

Figure 16. Partitioning of the casting into evaluation areas, where the calculated defects are
statically evaluated (left) and into zones with the same requirements specified by the designer
(right).
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In summary, any local probability density function is

determined by the initially defined general process vari-

ability, the locally simulated ideal mechanical properties,

and the statistical evaluation of simulated defects and

quality criteria for different evaluation areas. This allows

the prediction of the local mean as well as the minimum

properties expected in the specific zone of the part.

Use Case: ‘‘Determination of Process
Capability’’

In a later phase of the gearbox product development pro-

cess, the casting facility that receives the order must design

the casting process in detail. The die caster’s main objec-

tive is to use a casting and gating layout and process

conditions that result in robust manufacturing conditions.

Figure 17. Results of the microstructure simulation. In addition to the quantitative distributions of
microstructural features, phase proportions and the amount of (partially deleterious) intermetallic
phases are also calculated.

Figure 18. Comparison of the calculated ideal stress–strain curve of the matrix
from the microstructure simulation with real measurements at a point in the
casting.
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This should create a process window capable of handling

inevitable process variations at an acceptable cost. As no

casting is defect-free, controlling defects and their impact

on the specified quality levels (in the final mechanical

properties) is of paramount importance.

The methodology used (Figure 23) is basically the same as

in the evaluation of the design capability of the casting

design (2)–(8). Instead of defining and running a process

simulation for a single operating point [as in (1)], the die

caster now varies the part and mold design (e.g., different

gating concepts or cooling layouts) and the process window

with several input variables (e.g., varied filling conditions

such as slow shot, fast shot and switch-over point). It can

also account for process variations (e.g., effects of opera-

tional interruptions on part quality) to define the input data

for the DoE (11). Again, a general process variability is

specified, that in this case can be considered as the scatter

of general metallurgical and processing uncertainties.

Depending on the number of input parameters to be varied,

several process simulations are performed automatically

and without human interaction (12) to examine an entire

process window.

The statistical evaluation (13 A, B and C) is similar to that

previously described for the ’’Design Capability‘‘ use case.

By varying the process conditions, the investigated process

window and its process capability can now also be evalu-

ated in relation to the expected properties. The evaluation

tools integrated in the commercial software also allow the

Figure 19. Evaluation of different defects for the gear case, here porosity and air inclusions.

Figure 20. Strength distributions in the casting calculated using the methodology.

Figure 21. Statistical evaluation of the properties in
different zones using a Weibull analysis of the calculated
values. The curves demonstrate that the results align
with statistically expected distributions. Additionally, the
minimum expected properties in each zone can be
inferred from the results.
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investigation of individual process variables with respect to

the expected properties and the statistical investigation of

errors in the process window (Figure 24).

Discussion

The presented possibilities for probabilistic modeling of

properties, in combination with the deterministic models of

process simulation, offer completely new approaches for

Figure 22. The methodology is applied to different zones within the casting, each with unique
requirements. The curves illustrate the expected stress-strain curve and the distributions of
mechanical properties at the statistical mean of each zone. The probability function is fed by the
initially defined process variability, the locally predicted ideal mechanical properties and the
statistical evaluation of simulated defects or other quality criteria in any zone.

Figure 23. Flow chart of the overall process for determining process capability. Instead of a single simulation, the
methodology is supplemented by a virtual test plan in commercial software, in which all process parameters are
systematically examined and evaluated.
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validating cast part designs and selected process condi-

tions. The results align to the reality of the process, where

many variables can be accurately predicted, but process-

related fluctuations that are difficult to model must also be

managed. This is especially true for the stochastic error

distribution resulting from metallurgy, melt treatment, and

the casting process itself.

The integration of stochastics into the casting process

simulation also has the advantage of separately and inte-

grally considering differently calculated errors and their

influence on the properties in the casting. Property distri-

butions and minimum expected values can be evaluated

over the entire casting, including any specific areas or

zones. This is particularly beneficial for designing inno-

vative new castings, especially structural components,

where there is limited experience and high production and

cost risks (hic: Giga Castings).

Fast computation times for a single simulation provide

information that can be used early in the design process for

new castings. This is key to the acceptance and use of

process simulation information as part of design consid-

erations by the OEM. The uncertainties of the designer,

who typically lags knowledge of the process, can be

addressed to some extent by specifying a general process

variability. The source of data for this parameter variability

can be taken either from a part specification or from real

data of previous similar projects. The workload for the user

remains unchanged due to the automation of calculations

and evaluation in the software.

This approach does not replace the need to validate the

foundry’s manufacturing setup through simulation at a later

stage, once the die design and process conditions have been

established. However, it does allow the designer to incor-

porate the expected material properties into the perfor-

mance analysis of the part without significant additional

effort. It also provides the OEM with information on the

sensitivity of their design considerations to subsequent

process reliability.

When designing the die and process conditions, the

application of virtual test plans offer a systematic way to

optimize the casting technology or process window. This

approach not only focuses on error prevention but also

investigates the influence on the required properties. The

concept of performing numerous virtual tensile tests

through simulation allows for the statistical evaluation of

large amounts of data. This is a decisive advantage over

real tests, which must be repeated many times to ensure

reliable results.

Of course, the new method has its limitations. The quality

of the results and their evaluation depends on the knowl-

edge and accuracy of the defined input values for the

simulated process. This is especially true for completely

different casting engineering concepts. The better the

models are at predicting the defects in the casting that

specifically cause failure, the more accurate the statements

about the expected properties will be. Additionally, the use

of stochastics increases the reliability of the results and

their application to component design and process control.

Summary and Outlook

40 years after the introduction of casting process simula-

tion, combining the known capabilities of deterministic

models with probabilistic methods, marks a significant

innovation for the predictive capability of casting designs

and processes. The new patent-pending methodology pre-

sented here is not limited to die casting. It can be applied,

with adaptations, to all casting processes and materials.35, 36

The methodology is still under development and requires

further testing, particularly in real-world applications. Sev-

eral industrial projects are currently underway with users,

both OEMs and foundries to validate the methodology in the

real-world.31

Today, everyone is talking about the use of ’’big data‘‘ and

the application of AI to determine correlations in order to

control processes. In the foundry industry, identifying and

managing large amounts of data is particularly challenging.

Figure 24. Key additional results of the process capability methodology: expected process capability based on the
examined virtual test plan (right); various correlations between process variables and expected properties (center);
distribution of calculated defects in the casting (left).
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This is due to the long development chain and the

numerous factors influencing decisions. Many variables

can only be measured indirectly and cannot be controlled,

and a large number of factors that influence quality. Data

can essentially only be determined during production, in

which by that time all cost-related decisions have already

been made. Casting process simulation does not have these

limitations. Essential information and data can be gener-

ated at the design stage and before production begins. This

provides an opportunity to apply AI concepts using data

from the digital twin of real measurements. Probabilistic

modeling also aligns with the foundryman’s experience,

which considers process variability, scrap rates, and prop-

erty scatter. This methodology therefore offers the potential

to significantly improve the acceptance of simulation

results when using currently available models.

The methodology presented here enables addressing these

challenges in virtual space, contributing to reliable com-

ponent design and robust process control. The goal is not to

predict the location of each pore 100% of the time. Instead,

the aim is to provide the users confidence in the probability

with which they can safely design or manufacture their

casting.
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